All | Transparent | Reflective | Diffuse | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | EPE↓ | 1px↓ | 3px↓ | 5px↓ | EPE↓ | 1px↓ | 3px↓ | 5px↓ | EPE↓ | 1px↓ | 3px↓ | 5px↓ | EPE↓ | 1px↓ | 3px↓ | 5px↓ |
RAFT [1] | 16.49 | 78.45 | 55.64 | 45.78 | 20.72 | 82.72 | 59.69 | 49.06 | 8.51 | 62.05 | 40.57 | 27.56 | 10.76 | 50.78 | 27.56 | 24.39 |
FlowNet-C [2] | 21.14 | 94.88 | 77.86 | 65.2 | 24.01 | 94.84 | 77.9 | 65.15 | 13.85 | 94.82 | 79.18 | 67.35 | 17.04 | 96.18 | 70.95 | 56.46 |
FlowFormer [3] | 18.49 | 78.83 | 58.61 | 49.24 | 22.56 | 83.02 | 63.42 | 53.64 | 9.54 | 61.73 | 39.63 | 32.24 | 5.01 | 56.57 | 30.21 | 21.33 |
GMFlow+ [4] | 17.62 | 89.83 | 67.21 | 54.29 | 21.36 | 90.36 | 68.83 | 56.45 | 9.68 | 88.65 | 61.91 | 45.8 | 10.06 | 82.53 | 52.35 | 41.21 |
GMFlow [5] | 16.92 | 88.45 | 64.0 | 51.71 | 20.72 | 89.51 | 65.9 | 54.01 | 8.74 | 85.86 | 58.01 | 43.18 | 8.29 | 74.63 | 45.58 | 35.64 |
CRAFT [6] | 17.82 | 80.31 | 57.6 | 47.9 | 21.57 | 84.07 | 61.86 | 51.34 | 10.11 | 64.79 | 40.48 | 33.91 | 8.73 | 60.94 | 33.78 | 29.49 |
SKFlow [7] | 18.14 | 79.12 | 57.47 | 48.33 | 22.17 | 83.31 | 62.01 | 52.12 | 9.41 | 62.38 | 38.95 | 32.89 | 8.17 | 55.15 | 33.09 | 28.21 |
GMA [8] | 16.58 | 79.26 | 57.04 | 46.6 | 20.35 | 82.93 | 61.16 | 49.91 | 8.18 | 65.34 | 41.04 | 33.83 | 12.0 | 55.04 | 31.45 | 25.48 |
PWC-Net [9] | 28.39 | 83.93 | 63.66 | 54.33 | 31.75 | 86.34 | 66.69 | 57.1 | 15.45 | 74.12 | 51.02 | 43.56 | 20.48 | 70.8 | 48.74 | 37.06 |
FlowNet2 [10] | 20.67 | 86.42 | 66.54 | 56.66 | 23.54 | 87.19 | 67.61 | 57.55 | 13.52 | 84.57 | 63.45 | 53.97 | 15.42 | 76.3 | 54.82 | 47.54 |
RAFT-ft. (L) [11] | 17.46 | 78.13 | 53.12 | 43.33 | 18.54 | 82.15 | 56.06 | 45.73 | 17.3 | 62.6 | 41.75 | 33.89 | 14.69 | 52.6 | 34.73 | 28.87 |
RAFT-ft. (S) [12] | 17.94 | 79.53 | 59.47 | 49.69 | 21.96 | 82.94 | 63.15 | 52.85 | 8.89 | 66.41 | 45.21 | 37.11 | 9.07 | 57.7 | 36.44 | 31.34 |
RAFT-ft. (S+L) [13] | 15.63 | 77.81 | 52.75 | 42.76 | 18.39 | 81.88 | 56.17 | 45.4 | 11.73 | 61.93 | 39.48 | 32.97 | 6.95 | 52.75 | 31.23 | 24.24 |
[1] Raft: Recurrent all-pairs field transforms for optical flow. [paper] [code]
[2] Flownet: Learning optical flow with convolutional networks. [paper]
[3] FlowFormer: A Transformer Architecture for Optical Flow. [paper] [code]
[4] Unifying flow, stereo and depth estimation. [paper] [code]
[5] Gmflow: Learning optical flow via global matching. [paper] [code]
[6] Craft: Cross-attentional flow transformer for robust optical flow. [paper] [code]
[7] Skflow: Learning optical flow with super kernels.. [paper] [code]
[8] Learning to estimate hidden motions with global motion aggregation. [paper] [code]
[9] Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. [paper] [code]
[10] Flownet 2.0: Evolution of optical flow estimation with deep networks. [paper]
[11] LayeredFlow: A Real-World Benchmark for Non-Lambertian Multi-Layer Optical Flow. [paper] [code]
[12] LayeredFlow: A Real-World Benchmark for Non-Lambertian Multi-Layer Optical Flow. [paper] [code]
[13] LayeredFlow: A Real-World Benchmark for Non-Lambertian Multi-Layer Optical Flow. [paper] [code]